光纖的傳輸速率、傳輸距離受光纖的傳輸損耗、光纖的色散特性和光纖非線性等的影響。為了進一步提高光纖的傳輸容量和光纖的傳輸速率,對光纖的設計參數(shù)和制造方法進行了進一步的改進。由此,已經(jīng)制造出色散特性得到改善的、更適合于大容量和長距離傳輸?shù)男乱淮饫w。這些新類型的光纖包括非零色散位移光纖(NZ-DSF,也稱作G.655型光纖)、大有效面積G.655型光纖、色散平坦的G.655型光纖和全波光纖等。
uto4bs: !6kLg1 一、 各種光纖的發(fā)展
7==Uoy*O `'g%z: ~ 1.G.652型光纖
2nwP-i y:457R2F G.652型光纖的損耗特性具有三個特點:(l)在短波長區(qū)內(nèi)的衰減隨波長的增加而減小,這是因為在這個區(qū)域內(nèi),與波長的 4次方成反比的瑞利散射所引起的衰減是主要的;(2)損耗曲線上有羥基( OH-)引起的幾個吸收峰,特別是 1.385μm上的的峰;(3)在 1.6μm以上的波長上由于彎曲損耗和二氧化硅的吸收而使衰減有上升的趨勢。因此,在G.652型光纖內(nèi)有3個低損耗窗口的波長,即850nm,1310nm和1550nm。其中損耗最小的波長是1550nm。在G.652型光纖中,其零色散波長為1310nm,也就是在光纖損耗第二小的這個波長上。對損耗最小的1550nm波長而言,其色散系數(shù)大約為17ps/(km.nm)。
-JcfP+{wS U*6r".sz 2.G.655型光纖
Ly^r8I {6n B83BB G.652型光纖為光信號的傳輸提供了很高的帶寬,但是它的不令人完全滿意之處在于其零色散波長在光纖損耗第二小的這個波長上,而沒有在損耗最小的1550nm波長上。而這個特性對一個光纖通信系統(tǒng)來說意味著:如果這個光纖通信系統(tǒng)對損耗特性是最優(yōu)的,那么它對色散限制特性就不是最優(yōu)的;如果這個光纖通信系統(tǒng)對色散特性是最優(yōu),那么它對損耗限制特性就不是最優(yōu)的。
U?kJXM2 j/9'L^] 為了使光纖通信系統(tǒng)對損耗限制特性和色散限制特性都是最優(yōu)的,人們又研制出色散位移光纖(DSF),即將光纖的零色散波長從1310nm處移動到1550nm處,而光纖的損耗特性不發(fā)生變化。也就是將零色散波長移動到損耗最小的波長上。但是零色散波長最大的問題是容易產(chǎn)生四波混頻現(xiàn)象,所以為了避免產(chǎn)生四波混頻非線性的影響,同時又使1550nm處的色散系數(shù)值較小,就產(chǎn)生了NZ-DSF光纖。NZ-DSF光纖的色散值大到足以允許DWDM傳輸,并且使信道間有害的非線性相互作用減至最低,同時又小到足以使信號以10Gbit/s的速率傳輸300至400公里而無需色散補償。
YS;Ql\4 _xbVAI4 按照光纖在1550nm處的色散系數(shù)的正負,G.655型光纖又分為兩類:正色散系數(shù)G.655型光纖和負色散系數(shù)G.655型光纖。典型的G.655光纖在1550nm波長區(qū)的色散值為G.652光纖的1/4~1/6,因此色散補償距離也大致為G.652光纖的4~6倍,色散補償成本(包括光放大器、色散補償器和安裝調(diào)試)遠低于G.652光纖。另外,由于G.655光纖采用了新的光纖拉制工藝,具有較小的極化模色散,單根光纖的極化模色散一般不超過0.05ps/km1/2。即便按0.1ps/km1/2考慮,這也可以完成至少400km長的40Gbit/s信號的傳輸。
N!,@}s _G`kj{J 3. 大有效面積光纖
ATwPfo8jx@ RhYf+?2 高速傳輸系統(tǒng)的主要性能限制是色散和非線性。通常,線性色散可以用色散補償?shù)姆椒▉硐蔷性的影響卻不能用簡單的線性補償?shù)姆椒▉硐9饫w的非線性包括自相位調(diào)制、交叉相位調(diào)制和四波混頻,光纖的有效面積是決定光纖非線性的主要因素。
0"ZRJl<)[I pN?
NZ-DSF光纖大大地改善了光纖的色散特性,但是因為光纖特定折射率的分布與普通的SMF光纖不同,所以,與普通SMF光纖相比,其模場直徑變小,相應地,其有效面積也減小。在連接有效面積小的光纖時,更容易產(chǎn)生較大的插入損耗,所以對光纖接頭的要求更高;同時,有效面積小的光纖更容易產(chǎn)生非線性。理論研究表明,增加光纖有效面積能減低所有的非線性。所以,增大有效面積是一種減低所有光纖非線性效應,從而改進系統(tǒng)性能的有效方法。
L"AZ,|wIk "6.kZ$`% 例如,美國康寧公司所生產(chǎn)的Leaf光纖,光纖的有效面積達72μm2以上,與G.652光纖的接近,同時其彎曲性能、極化模色散和衰減性能均可達到常規(guī)G.655光纖水平,而且色散系數(shù)的下限值已經(jīng)提高,使之在1530~1565nm窗口內(nèi)處于2~6ps/(nm·km)之內(nèi),而在1565~1625nm窗口內(nèi)處于4.5~11.2ps/(nm·km)之內(nèi),從而可以進一步減小四波混合的影響。由于有效面積大大增加,可承受較高的光功率,因而可以更有效地克服非線性影響,若按72μm2面積設計,這至少減少大約1.2dB的非線性影響。按目前的有效面積設計,其光區(qū)段長度也可以比普通光纖增加約10km。其主要缺點是有效面積變大后導致色散斜率偏大,約為0.1ps/(nm2·km),這樣在L波段的高端,其色散系數(shù)可高達11.2ps/(nm·km),使高波段通路的色散受限距離縮短,或傳輸距離很長時功率代價變大;當應用范圍從C波段擴展到L波段時需要較復雜的色散補償技術,這就不得不采用高低波段兩個色散補償模塊的方法,從而增加了色散補償成本。
O)W1.]GMbf w,^!kO0)~8 4.低色散斜率光纖
xvb5-tK
- H1N%uk=kV 色散對光脈沖信號傳輸?shù)挠绊懯谴偈构饷}沖信號的寬度增加。在WDM傳輸系統(tǒng)中,由于色散的積累,各通路的色散都隨傳輸距離的延長而增大。然而,由于色散斜率的作用,各通路的色散積累量是不同的,其中位于兩側(cè)的邊緣通路間的色散積累量差別最大。當傳輸距離超過一定值后,具有較大色散積累量通路的色散值超標,從而限制了整個WDM系統(tǒng)的傳輸距離。
r=u>TA$ +}%4]O; 當DWDM系統(tǒng)的應用范圍已經(jīng)擴展到L波段,全部可用頻帶可以從1530~1565nm擴展到1530~1625nm時,如果色散斜率仍維持原來的數(shù)值(大約0.07~0.10ps/(nm2·km)),長距離傳輸時短波長和長波長之間的色散差異將隨距離增長而增加,勢必造成L波段高端過大的色散系數(shù),影響10Gbit/s及以上速率信號的傳輸距離,或者說需要代價較高的色散補償措施才行,而低波段的色散又嫌太小,多波長傳輸時不足以壓制四波混合和交叉相位調(diào)制的影響。
aj1Zi3h n&&X{Rl 為此,開發(fā)低色散斜率的G.655光纖成為必要。通過降低色散斜率,我們可以改進短波長的性能而不必增加長波長的色散,使整個C波段和L波段的色散變化減至最小,同時可以降低C波段和L波段色散補償?shù)某杀竞蛷碗s性。
~Z
苍南县|
久治县|
营山县|
衡山县|
高淳县|
清水河县|
靖边县|
徐水县|
武鸣县|
阿尔山市|
响水县|
竹北市|
西峡县|
会泽县|
武胜县|
平乡县|
罗江县|
邹城市|
银川市|
杭锦旗|
奉贤区|
申扎县|
万荣县|
宜丰县|
五大连池市|
商南县|
施秉县|
丰都县|
巴里|
甘谷县|
尤溪县|
虞城县|
沂南县|
玉龙|
泌阳县|
九寨沟县|
双桥区|
乐业县|
白银市|
宁远县|
富裕县|