成人女人看片免费视频放人_亚洲色精品三区二区一区_欧美亚洲国产精品久久_成人无遮挡裸免费视频在线观看_97SE亚洲国产综合在线_精品久久久久久777米琪桃花_天天躁日日躁很很很躁_色噜噜狠狠一区二区三区果冻_国产免费久久精品国产传媒_67194成是人免费无码

切換到寬版
  • 廣告投放
  • 稿件投遞
  • 繁體中文
    • 10867閱讀
    • 9回復(fù)

    [求助]ansys分析后面型數(shù)據(jù)如何進行zernike多項式擬合? [復(fù)制鏈接]

    上一主題 下一主題
    離線niuhelen
     
    發(fā)帖
    19
    光幣
    28
    光券
    0
    只看樓主 倒序閱讀 樓主  發(fā)表于: 2011-03-12
    小弟不是學(xué)光學(xué)的,所以想請各位大俠指點啊!謝謝啦 J-Wphc!m  
    就是我用ansys計算出了鏡面的面型的數(shù)據(jù),怎樣可以得到zernike多項式系數(shù),然后用zemax各階得到像差!謝謝啦! +\~Mx>Cn  
     
    分享到
    離線phility
    發(fā)帖
    69
    光幣
    11
    光券
    0
    只看該作者 1樓 發(fā)表于: 2011-03-12
    可以用matlab編程,用zernike多項式進行波面擬合,求出zernike多項式的系數(shù),擬合的算法有很多種,最簡單的是最小二乘法,你可以查下相關(guān)資料,挺簡單的
    離線phility
    發(fā)帖
    69
    光幣
    11
    光券
    0
    只看該作者 2樓 發(fā)表于: 2011-03-12
    澤尼克多項式的前9項對應(yīng)象差的
    離線niuhelen
    發(fā)帖
    19
    光幣
    28
    光券
    0
    只看該作者 3樓 發(fā)表于: 2011-03-12
    回 2樓(phility) 的帖子
    非常感謝啊,我手上也有zernike多項式的擬合的源程序,也不知道對不對,不怎么會有 \hFIg3  
    function z = zernfun(n,m,r,theta,nflag) Jp]eFaqp  
    %ZERNFUN Zernike functions of order N and frequency M on the unit circle. :s`\jJ  
    %   Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N x1{gw 5:  
    %   and angular frequency M, evaluated at positions (R,THETA) on the -A17tC20J1  
    %   unit circle.  N is a vector of positive integers (including 0), and 63n<4VSH  
    %   M is a vector with the same number of elements as N.  Each element s6J`i&uu  
    %   k of M must be a positive integer, with possible values M(k) = -N(k) B&RgUIrFoY  
    %   to +N(k) in steps of 2.  R is a vector of numbers between 0 and 1, #OVf2  "  
    %   and THETA is a vector of angles.  R and THETA must have the same #iAEcC0k5  
    %   length.  The output Z is a matrix with one column for every (N,M) V+2C!)f(  
    %   pair, and one row for every (R,THETA) pair. 5rx;?yvn  
    % B M$+r(#t  
    %   Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike ]:vo"{*C  
    %   functions.  The normalization factor sqrt((2-delta(m,0))*(n+1)/pi), 01" b9`jU  
    %   with delta(m,0) the Kronecker delta, is chosen so that the integral &?gvW//L2  
    %   of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1, QSq0{  
    %   and theta=0 to theta=2*pi) is unity.  For the non-normalized .#ASo!O5q  
    %   polynomials, max(Znm(r=1,theta))=1 for all [n,m]. 27-GfC=7*  
    % aZ{]t:]  
    %   The Zernike functions are an orthogonal basis on the unit circle. CDTM<0`%  
    %   They are used in disciplines such as astronomy, optics, and 9akIu.H  
    %   optometry to describe functions on a circular domain. /vLdm-4  
    % q:/<^|  
    %   The following table lists the first 15 Zernike functions. D<d4"*qo  
    % *eonXJYD  
    %       n    m    Zernike function           Normalization .#[==  
    %       -------------------------------------------------- &KS*rHgt?  
    %       0    0    1                                 1 u+Q<> >lU  
    %       1    1    r * cos(theta)                    2 ).b,KSi  
    %       1   -1    r * sin(theta)                    2 -%eBip,'yl  
    %       2   -2    r^2 * cos(2*theta)             sqrt(6) j6_tFJT  
    %       2    0    (2*r^2 - 1)                    sqrt(3) cq,0?2R`t  
    %       2    2    r^2 * sin(2*theta)             sqrt(6) $ 'obj  
    %       3   -3    r^3 * cos(3*theta)             sqrt(8) }hy, }2(8  
    %       3   -1    (3*r^3 - 2*r) * cos(theta)     sqrt(8) t/TWLhx/  
    %       3    1    (3*r^3 - 2*r) * sin(theta)     sqrt(8) z nxAP|  
    %       3    3    r^3 * sin(3*theta)             sqrt(8) mWPA]g(  
    %       4   -4    r^4 * cos(4*theta)             sqrt(10) OEFAL t  
    %       4   -2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) p\ }Ep  
    %       4    0    6*r^4 - 6*r^2 + 1              sqrt(5) ?]]d s]  
    %       4    2    (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10) <//#0r*  
    %       4    4    r^4 * sin(4*theta)             sqrt(10) O.% $oV  
    %       -------------------------------------------------- 3</gK$f2  
    % ?'$Yj>R6  
    %   Example 1: m=hUHA,p4  
    % O<o>/HH$  
    %       % Display the Zernike function Z(n=5,m=1) Q'B2!9=LB  
    %       x = -1:0.01:1; fT.GYvt`  
    %       [X,Y] = meshgrid(x,x); :|tWKA  
    %       [theta,r] = cart2pol(X,Y); ~DYv6-p%  
    %       idx = r<=1; dRD t.U!T  
    %       z = nan(size(X)); WQ1~9# 长兴县| 丰顺县| 廊坊市| 绍兴县| 定远县| 西充县| 琼中| 安龙县| 昂仁县| 建德市| 嘉荫县| 甘孜县| 谷城县| 遂川县| 井冈山市| 望江县| 安阳县| 义马市| 都匀市| 红河县| 雅江县| 定安县| 长宁县| 德州市| 岚皋县| 嘉祥县| 高安市| 栾川县| 通道| 盐山县| 奉新县| 遂川县| 龙州县| 华坪县| 银川市| 和平区| 新巴尔虎右旗| 穆棱市| 沧源| 巴中市| 上栗县|