非常感謝啊,我手上也有zernike多項式的擬合的源程序,也不知道對不對,不怎么會有
\hFIg3 function z = zernfun(n,m,r,theta,nflag)
Jp]eFaqp %ZERNFUN Zernike functions of order N and frequency M on the unit circle.
:s`\jJ % Z = ZERNFUN(N,M,R,THETA) returns the Zernike functions of order N
x1{gw 5: % and angular frequency M, evaluated at positions (R,THETA) on the
-A17tC20J1 % unit circle. N is a vector of positive integers (including 0), and
63n<4VSH % M is a vector with the same number of elements as N. Each element
s6J`i&uu % k of M must be a positive integer, with possible values M(k) = -N(k)
B&RgUIrFoY % to +N(k) in steps of 2. R is a vector of numbers between 0 and 1,
#OVf2
" % and THETA is a vector of angles. R and THETA must have the same
#iAEcC0k5 % length. The output Z is a matrix with one column for every (N,M)
V+2C!)f( % pair, and one row for every (R,THETA) pair.
5rx;?yvn %
B
M$+r(#t % Z = ZERNFUN(N,M,R,THETA,'norm') returns the normalized Zernike
]:vo"{*C % functions. The normalization factor sqrt((2-delta(m,0))*(n+1)/pi),
01" b9`jU % with delta(m,0) the Kronecker delta, is chosen so that the integral
&?gvW//L2 % of (r * [Znm(r,theta)]^2) over the unit circle (from r=0 to r=1,
QSq0{ % and theta=0 to theta=2*pi) is unity. For the non-normalized
.#ASo!O5q % polynomials, max(Znm(r=1,theta))=1 for all [n,m].
27-GfC=7* %
aZ{]t:] % The Zernike functions are an orthogonal basis on the unit circle.
CDTM<0`% % They are used in disciplines such as astronomy, optics, and
9akIu.H % optometry to describe functions on a circular domain.
/vLdm-4 %
q:/<^| % The following table lists the first 15 Zernike functions.
D<d4"*qo %
*eonXJYD
% n m Zernike function Normalization
.#[== % --------------------------------------------------
&KS*rHgt? % 0 0 1 1
u+Q<>>lU % 1 1 r * cos(theta) 2
).b,KSi % 1 -1 r * sin(theta) 2
-%eBip,'yl % 2 -2 r^2 * cos(2*theta) sqrt(6)
j6_tFJT % 2 0 (2*r^2 - 1) sqrt(3)
cq,0?2R`t % 2 2 r^2 * sin(2*theta) sqrt(6)
$'obj % 3 -3 r^3 * cos(3*theta) sqrt(8)
}hy,
}2(8 % 3 -1 (3*r^3 - 2*r) * cos(theta) sqrt(8)
t/TWLhx/ % 3 1 (3*r^3 - 2*r) * sin(theta) sqrt(8)
z nxAP| % 3 3 r^3 * sin(3*theta) sqrt(8)
mWPA]g( % 4 -4 r^4 * cos(4*theta) sqrt(10)
OEFALt % 4 -2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)
p\ }Ep % 4 0 6*r^4 - 6*r^2 + 1 sqrt(5)
?]]d
s] % 4 2 (4*r^4 - 3*r^2) * cos(2*theta) sqrt(10)
<//#0r* % 4 4 r^4 * sin(4*theta) sqrt(10)
O.% $oV % --------------------------------------------------
3</gK$f2 %
?'$Yj>R6 % Example 1:
m=hUHA,p4 %
O<o>/HH$ % % Display the Zernike function Z(n=5,m=1)
Q'B2!9=LB % x = -1:0.01:1;
fT.GYvt` % [X,Y] = meshgrid(x,x);
:|tWKA % [theta,r] = cart2pol(X,Y);
~DYv6-p% % idx = r<=1;
dRD t.U!T % z = nan(size(X));
WQ1~9#
长兴县|
丰顺县|
廊坊市|
绍兴县|
定远县|
西充县|
琼中|
安龙县|
昂仁县|
建德市|
嘉荫县|
甘孜县|
谷城县|
遂川县|
井冈山市|
望江县|
安阳县|
义马市|
都匀市|
红河县|
雅江县|
定安县|
长宁县|
德州市|
岚皋县|
嘉祥县|
高安市|
栾川县|
通道|
盐山县|
奉新县|
遂川县|
龙州县|
华坪县|
银川市|
和平区|
新巴尔虎右旗|
穆棱市|
沧源|
巴中市|
上栗县|