| jwr_sp |
2006-03-08 17:21 |
光機(jī)設(shè)計(jì)概念與分析
光機(jī)設(shè)計(jì)概念與分析第一章:投影機(jī)系統(tǒng)簡介 ?1-n\ka Vz7w{HY 1-1光機(jī)設(shè)計(jì)初步認(rèn)識(shí) ;qMnO_E 0I(GB;E 照明系統(tǒng)的設(shè)計(jì)目的為何?燈源在LCD中有何作用? =0@d|LeZ Hnd9T(UB 現(xiàn)在要說明的是投影機(jī)光機(jī)之設(shè)計(jì)的基本概念。在此,我們以一三片式穿透式LCD光機(jī)為例。 DWm;&RPJ 如畫面中所顯示的是一般所使用的三片式LCD所組成之光機(jī)系統(tǒng)。整個(gè) LCD projector的作用是因?yàn)長CD本身并非自發(fā)性的發(fā)光組件, =u:6b} = 所以必須使用一個(gè)燈源來提供光源。使其能透過照明系統(tǒng),有效的照射于LCD面板上,提供LCD面板投影至鏡頭所需要的光源。 &9RW9u " 首先,我們將照明系統(tǒng)視為一個(gè)黑盒子,燈源的發(fā)光分布經(jīng)過投影機(jī)系統(tǒng)成像到LCD面板上面。 ch)Ps2i 由于燈源本身特性使然,其在空間上之能量部分如圖A中所示,如果將此光源直接照射于液晶面版上面,除了使得光使用效率大打折扣外,也會(huì)使的面版上呈現(xiàn)不均勻之能量分布,進(jìn)而影響了成像品質(zhì)。所以照明系統(tǒng)設(shè)計(jì)之目的,就是希望透過設(shè)計(jì)的技巧,除了提升光源之效率外,并能均勻化液晶面版上之能量,如圖B中所示。 Mf%^\g.} 如此一來,可使得LCD成像面上的每個(gè)位置都達(dá)到均勻效率的分布。透過這樣的設(shè)計(jì),可將LCD面板透過鏡頭成像的影像效果達(dá)到最佳品質(zhì)。 1-2光源在照明系統(tǒng)之行為 MrKU,- q/rHHuY} 燈源于反射罩上之行為如何? t9f4P^V` 為了使設(shè)計(jì)之照明系統(tǒng)更符合實(shí)際之需求,有效而準(zhǔn)確的掌握光于照明系統(tǒng)之行為,就成為首要之事,所以首先我們由燈開始,藉由簡單之幾何關(guān)系,了解光于反射罩上之行為。如圖1所示,是一2次曲線方程式,我們將曲線上第1焦點(diǎn)定義為f1、第2焦點(diǎn)定義為f2,而曲線頂點(diǎn)與第一焦點(diǎn)距離則定義為f,兩焦點(diǎn)之距離為S。首先由f1發(fā)射出一光源達(dá)到反射罩P點(diǎn)上,經(jīng)過反射罩,必定會(huì)聚焦于f2上面。在f1、P、f2三點(diǎn) 所構(gòu)成之三角形關(guān)系式中,我們定義f1到反射罩的距離為r ,P點(diǎn)與f2之距離則定義為r’;光線與光軸的夾角為α。 ZZ]OR;8 則我們利用此三角關(guān)系式可以導(dǎo)出公式1 (r')2=r2+s2 - 2rs cos (π - α)。如果我們再把兩焦點(diǎn)之距離S與焦距F之間定義為延伸率E,整個(gè)r的廣義式子就是畫面中的公式2 。所以利用公式2可以廣義的定義任意一個(gè)曲線。 yVmtsQ-}a 舉例來說:如果在f1焦點(diǎn)上,有一個(gè)大小固定的光源時(shí),光線會(huì)有一個(gè) △f1的變異量,因此在其聚焦點(diǎn)的位置上,就會(huì)產(chǎn)生 △f2=E△f1。所以當(dāng)f1有△f1的變化量時(shí),在f2的聚焦點(diǎn)會(huì)有 E△f1的變異量。利用此關(guān)系式,當(dāng)f1有一定的變化量時(shí),就可以很清楚的知道,光經(jīng)過一個(gè)反射罩之后,光與聚焦點(diǎn)處的變化量的大小為何。當(dāng)S=0時(shí),由公式2可知,R會(huì)等于F,為一個(gè)圓的表示式。當(dāng)S=∞時(shí), r可以簡化成,2倍的焦距除以1加上 cos α ,如畫面上的公式3,為反射罩一拋物線的表示式。 Mu_mm/U_ 1-3反射罩口徑與焦距之關(guān)系 ~kSnXJv QigoRB!z#9 何謂拋物線的表示式?如何求出反射罩所需之最小口徑及最大口徑半徑? wH(vX<W-E 為了解光源經(jīng)過反射罩時(shí)之行為,由前面我們得到的拋物線表示式:r為2倍的焦距除以1加上cos α ,分別仿真以光α=45及α=135,來看其在反射罩上之光線的行為。當(dāng)α=45度角時(shí),代入拋物線的表示式公式1時(shí),可得r=2(2 - √2)f。相同的,當(dāng)α=135度角(也就負(fù)45度時(shí))可得r=2(2 + √2)f 。也就是說利用拋物線的表示式 ,隨時(shí)可以求出當(dāng)α為不同角度時(shí),R與f之間之關(guān)系式子。以我們平常所使用HID燈而言,一般的張角是由45度到135度之間,所以利用此公式,進(jìn)而我們可以計(jì)算出反射罩所需之最小口徑及最大口徑半徑。依圖1例子,當(dāng)α=135度時(shí),光線由135度角出射后,這是其最大張角,因此反射罩必須當(dāng)R是極大值時(shí)才可收到光。 LAK-!!0X 所以當(dāng)R為最大值時(shí),可得式子1:Rmax= r . cos 45° Rmax =(2 √2+2)f 。利用此關(guān)系式我們可以重復(fù)的計(jì)算出Rmax 與Rmin 之間的關(guān)系。由式子1和式子2我們可以導(dǎo)出式子3:Rmax =(2 √2+2)f 、Rmin =(2 √2-2)f 。我們也可由導(dǎo)出的結(jié)果中發(fā)現(xiàn),只要是使用拋物杯的反射罩時(shí),當(dāng)焦距固定時(shí),其最大的口徑半徑就已經(jīng)可以決定了。而且當(dāng)f固定時(shí),最小半徑也已經(jīng)決定了。所以利用這些關(guān)系式結(jié)果可以決定反射罩之使用效率。 <u x*r#a!d UuOLv;v 如何求出不同焦距時(shí)的所需要的最小的口徑半徑和最大的口徑半徑? ard3yNQt VtzyB 接著,我們將前面的圖以制表方式呈現(xiàn),畫面中表格的橫軸顯示的是反射罩的焦距Focal Length,縱軸表示的是反射罩的口徑半徑。如畫面中圖形所示,當(dāng)焦距固定為8mm時(shí),其最小的口徑半徑為6.63,最大的口徑半徑為38.63。我們可由此圖表的例子與實(shí)際的反射罩作一比對,將會(huì)發(fā)現(xiàn)與實(shí)際的情況相差并不會(huì)太大。藉由此表,我們隨時(shí)可以計(jì)算出在不同F(xiàn)ocal Length焦距時(shí)的所需要的最小的口徑半徑和最大的口徑半徑。 9GtVI^] (8@hF#N1 第二章:投影機(jī)光學(xué)組件的角色與作用 {g!exbVf ! 6p)t[s 2-1成像基本概念 :~0^ib<v; >F\rBc& 何謂marginal ray與chief ray?其作用為何? A&}nRP9 njwR~
井陉县|
城步|
布尔津县|
安丘市|
湄潭县|
芮城县|
志丹县|
屏边|
连云港市|
高淳县|
新宁县|
拉孜县|
温州市|
阜新市|
五寨县|
南丰县|
娱乐|
晴隆县|
梅州市|
桃源县|
云阳县|
锡林浩特市|
天等县|
阿拉善右旗|
洪雅县|
梨树县|
青浦区|
江阴市|
龙门县|
泾阳县|
合江县|
穆棱市|
公主岭市|
三穗县|
班玛县|
隆林|
靖安县|
夏河县|
尉氏县|
华池县|
磐安县|
| |