| 槐花村人 |
2010-10-14 18:25 |
解析大功率半導(dǎo)體激光器的現(xiàn)狀
1.引言 E
Mq P *f{\ze@5= 半導(dǎo)體激光器由于具有體積小、重量輕、效率高等眾多優(yōu)點(diǎn),誕生伊始一直是激光領(lǐng)域的關(guān)注焦點(diǎn),廣泛應(yīng)用于工業(yè)、軍事、醫(yī)療、通信等眾多領(lǐng)域。但是由于自身量子阱波導(dǎo)結(jié)構(gòu)的限制,半導(dǎo)體激光器的輸出光束質(zhì)量與固體激光器、CO2激光器等傳統(tǒng)激光器相比較差,阻礙了其應(yīng)用領(lǐng)域的拓展。近年來,隨著半導(dǎo)體材料外延生長技術(shù)、半導(dǎo)體激光波導(dǎo)結(jié)構(gòu)優(yōu)化技術(shù)、腔面鈍化技術(shù)、高穩(wěn)定性封裝技術(shù)、高效散熱技術(shù)的飛速發(fā)展,特別是在直接半導(dǎo)體激光工業(yè)加工應(yīng)用以及大功率光纖激光器抽運(yùn)需求的推動下,具有大功率、高光束質(zhì)量的半導(dǎo)體激光器飛速發(fā)展,為獲得高質(zhì)量、高性能的直接半導(dǎo)體激光加工設(shè)備以及高性能大功率光纖激光抽運(yùn)源提供了光源基礎(chǔ)。 ]JF>a_2wG f-&4x_5 2.大功率半導(dǎo)體激光器件最新進(jìn)展 \7o&'zEw Gv?3T Am8 作為半導(dǎo)體激光系統(tǒng)集成的基本單元,不同結(jié)構(gòu)與種類的半導(dǎo)體激光器件的性能提升直接推動了半導(dǎo)體激光器系統(tǒng)的發(fā)展,其中最為主要的是半導(dǎo)體激光器件輸出光束發(fā)散角的降低以及輸出功率的不斷增加。 E0]B=- },zP,y:cH 2.1.大功率半導(dǎo)體激光器件遠(yuǎn)場發(fā)散角控制 da<B6! _{0'3tI7 根據(jù)光束質(zhì)量的定義,以激光光束的光參數(shù)乘積(BPP)作為光束質(zhì)量的衡量指標(biāo),激光光束的遠(yuǎn)場發(fā)散角與BPP成正比,因此半導(dǎo)體激光器高功率輸出條件下遠(yuǎn)場發(fā)散角控制直接決定器件的光束質(zhì)量。從整體上看,半導(dǎo)體激光器波導(dǎo)結(jié)構(gòu)導(dǎo)致其遠(yuǎn)場光束嚴(yán)重不對稱。快軸方向可認(rèn)為是基模輸出,光束質(zhì)量好,但發(fā)散角大,快軸發(fā)散角的壓縮可有效降低快軸準(zhǔn)直鏡的孔徑要求。慢軸方向?yàn)槎嗄]敵觯馐|(zhì)量差,該方向發(fā)散角的減小直接提高器件光束質(zhì)量,是高光束半導(dǎo)體激光器研究領(lǐng)域關(guān)注的焦點(diǎn)。 NN\>(
= _dCdyf 在快軸發(fā)散角控制方面,如何兼顧快軸發(fā)散角和電光效率的問題一直是該領(lǐng)域研究熱點(diǎn),盡管多家研究機(jī)構(gòu)相續(xù)獲得快軸發(fā)散角僅為3o,甚至1o的器件,但是基于功率、光電效率及制備成本考慮,短期內(nèi)難以推廣實(shí)用。2010年初,德國費(fèi)迪南德-伯恩研究所(Ferdinand-Braun-Institute)的P. Crump等通過采用大光腔、低限制因子的方法獲得了30o快軸發(fā)散角(95%能量范圍),光電轉(zhuǎn)換效率為55%,基本達(dá)到實(shí)用化器件標(biāo)準(zhǔn)。而目前商用高功率半導(dǎo)體激光器件的快軸發(fā)散角也由原來的80o左右(95%能量范圍)降低到50o以下,大幅度降低了對快軸準(zhǔn)直鏡的數(shù)值孔徑要求。 ~Ry?}5&: Hz39v44 在慢軸發(fā)散角控制方面,最近研究表明,除器件自身結(jié)構(gòu)外,驅(qū)動電流密度與熱效應(yīng)共同影響半導(dǎo)體激光器慢軸發(fā)散角的大小,即長腔長單元器件的慢軸發(fā)散角最易控制,而在陣列器件中,隨著填充因子的增大,發(fā)光單元之間熱串?dāng)_的加劇會導(dǎo)致慢軸發(fā)散角的增大。2009年,瑞士Bookham公司制備獲得的5 mm腔長,9XX nm波段10 W商用器件,成功將慢軸發(fā)散角(95%能量范圍)由原來的10o~12o降低到7o左右;同年,德國Osram公司、美國相干公司制備陣列器件慢軸發(fā)散角(95%能量范圍)也達(dá)7o水平。 VJquB8?H
w@,Yj#_9cx 2.2.半導(dǎo)體激光標(biāo)準(zhǔn)厘米陣列發(fā)展現(xiàn)狀 vJTdZ p LCKCg[D
標(biāo)準(zhǔn)厘米陣列是為了獲得高功率輸出而在慢軸方向尺度為1 cm的襯底上橫向并聯(lián)集成多個半導(dǎo)體激光單元器件而獲得的半導(dǎo)體激光器件,長期以來一直是大功率半導(dǎo)體激光器中最常用的高功率器件形式。伴隨著高質(zhì)量、低缺陷半導(dǎo)體材料外延生長技術(shù)及腔面鈍化技術(shù)的提高,現(xiàn)有CM Bar的腔長由原來的0.6~1.0 mm增大到2.0~5.0mm,使得CM Bar輸出功率大幅度提高。2008年初,美國光譜物理公司Hanxuan Li等制備的5 mm腔長,填充因子為83%的半導(dǎo)體激光陣列,利用雙面微通道熱沉冷卻,在中心波長分別為808 nm,940 nm,980 nm處獲得800 W/bar,1010W/bar,950 W/bar的當(dāng)前實(shí)驗(yàn)室最高CM Bar連續(xù)功率輸出水平。此外,德國的JENOPTIK公司、瑞士的Oclaro公司等多家半導(dǎo)體激光供應(yīng)商也相續(xù)制備獲得千瓦級半導(dǎo)體激光陣列,其中Oclaro公司的J. Müller等更是明確指出,在現(xiàn)有技術(shù)條件下制備獲得1.5kW/bar陣列器件已不成問題。與此同時(shí),具有高光束質(zhì)量的低填充因子CM Bar的功率也不斷提高,表1為德國Limo公司獲得具有不同填充因子CM Bar的BPP比較, 由表1結(jié)果發(fā)現(xiàn)橫向尺寸一定的半導(dǎo)體激光陣列器件,在發(fā)散角相同的情況下,填充因子與BPP成正比,即填充因子越低,其光參數(shù)乘積越小,光束質(zhì)量越好。目前,9XX nm波段20%填充因子CM Bar連續(xù)輸出功率最高可達(dá)180 W/bar,快慢軸光束質(zhì)量對稱化后光參數(shù)乘積可達(dá)5.9 mm?mrad,商用器件可長期穩(wěn)定工作在80W以上;2.5%填充因子CM Bar連續(xù)輸出功率可達(dá)50 W/bar,快慢軸光束質(zhì)量對稱化后光參數(shù)乘積可達(dá)2.1mm?mrad,目前這種器件還處于研發(fā)中,需要進(jìn)一步提高其穩(wěn)定的輸出功率。然而,伴隨著CM Bar功率的不斷提高和高光束質(zhì)量要求下填充因子逐漸減小,一系列新的問題也隨之產(chǎn)生,特別是與之配套的低壓大電流恒流電源的高成本問題以及微通道熱沉散熱壽命短的問題逐漸顯現(xiàn)。 %i[G6+- C],"va 分析眾多超高功率CM Bar文獻(xiàn)可以發(fā)現(xiàn),多數(shù)功率測試均受制于電源最大電流的限制,而非CM Bar自身出射功率極限,而在工程運(yùn)用中,數(shù)伏電壓數(shù)百安電流的組合也會產(chǎn)生眾多實(shí)際問題。另一方面,超高功率CM Bar和具有高光束質(zhì)量的低填充因子CM Bar所產(chǎn)生的高熱流密度必須采用微通道熱沉散熱,而現(xiàn)有水冷微通道熱沉的散熱極限無疑也成為了CM Bar功率及光束質(zhì)量進(jìn)一步提高的最大障礙。近期針對CM Bar散熱問題開發(fā)的雙面微通道冷卻技術(shù)對熱阻的降低作用有限,就目前看來缺乏與CM Bar功率提升相適應(yīng)的可持續(xù)發(fā)展性。此外,不可忽視的是,微通道熱沉相對較短的壽命一直是目前大功率半導(dǎo)體激光器的壽命瓶頸。而其他新型高效散熱技術(shù)如相變冷卻、噴霧冷卻以及微熱管技術(shù)由于其性能特點(diǎn)、成本以及結(jié)構(gòu)兼容性問題在短期內(nèi)難以真正實(shí)用于CM Bar散熱領(lǐng)域。鑒于以上兩方面的限制,近一兩年來,各大研究機(jī)構(gòu)及高功率半導(dǎo)體供應(yīng)商并不再一味追求提高CM Bar的輸出功率,而是逐漸將發(fā)展重點(diǎn)轉(zhuǎn)移到具有大功率、高光束質(zhì)量的半導(dǎo)體激光單元器件和短陣列器件研制領(lǐng)域。 KCEBJ{jM tP/0_^m 2.3.大功率半導(dǎo)體激光單元器件發(fā)展現(xiàn)狀 `F-<P%k {}>s0B 與CM Bar相比,半導(dǎo)體激光單元器件具有獨(dú)立的電、熱工作環(huán)境,避免了發(fā)光單元之間的熱串?dāng)_,使其在壽命、光束質(zhì)量方面與CM Bar相比具有明顯優(yōu)勢。此外單元器件驅(qū)動電流低、多個串聯(lián)工作大幅度降低了對驅(qū)動電源的要求。同時(shí)單元器件的發(fā)熱量相對較低,可直接采用傳導(dǎo)熱沉散熱,避免了微通道熱沉引入的壽命短的問題。而且獨(dú)立的熱工作環(huán)境使其可高功率密度工作,目前單元器件的有源區(qū)光功率線密度可達(dá)200 mW/μm以上,同時(shí)具有較窄的光譜寬度,而CM Bar有源區(qū)光功率線密度僅為50~85 mW/μm左右。特別是獨(dú)立的熱、電工作環(huán)境大幅度降低了器件的失效幾率,在高穩(wěn)定性金錫焊料封裝技術(shù)的支撐下,商用高功率單元器件壽命均達(dá)10萬小時(shí)以上,遠(yuǎn)高于CM Bar的壽命,有效降低了器件的使用成本。基于上述優(yōu)點(diǎn),單元器件大有逐漸替代CM Bar成為高功率、高光束質(zhì)量半導(dǎo)體激光主流器件的趨勢。 W>$2BsO 5DB4
金昌市|
利津县|
嵊泗县|
化德县|
长阳|
忻城县|
怀化市|
巧家县|
永仁县|
桃源县|
兴业县|
伽师县|
龙陵县|
高邑县|
两当县|
金堂县|
明溪县|
格尔木市|
海盐县|
左云县|
宜良县|
峨山|
普兰店市|
昆明市|
白沙|
濮阳市|
定兴县|
安塞县|
丘北县|
江口县|
循化|
北碚区|
开原市|
海南省|
罗源县|
兴化市|
郁南县|
湾仔区|
锦州市|
洱源县|
苍南县|
| |